• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Prof. Kalafatis’ Research group
  • Research
  • People
  • Biography

Performance Computing, XR and Robotics (PXaR)

Texas A&M University College of Engineering

Group Publications

Robotics/VR and AR Research

Roy, S.; Baruah, D.; Kalafatis, S., “Distributed Computation and Dynamic Load balancing in Modular Edge Robotics.” In 2022 IEEE 6th International Conference on Robotic Computing (IRC).

Roy, S.; Vo, T.; Hernandez, S.; Lehrmann, A.; Ali, A.; Kalafatis, S. IoT Security and Computation Management on a Multi-Robot System for Rescue Operations Based on a Cloud Framework. Sensors 2022, 22, 5569. https://doi.org/10.3390/s22155569

Miller, Andrew, and Stavros Kalafatis. “CLOUD-BASED NLP IN VIRTUAL REALITY.”

High Performance computing systems and AI Research

S. Das, W. Lian, S. Kalafatis and P. Lazaridis, “A Dynamic Algorithm for Optimization of Network Traffic through Smart Network Switch Data Flow Management,” 2022 13th International Conference on Network of the Future (NoF), 2022, pp. 1-5, doi: 10.1109/NoF55974.2022.9942601.

Dhal, S. B., Bagavathiannan M, Braga-Neto U, Kalafatis S (2022) Can Machine Learning classifiers be used to regulate nutrients using small training datasets for aquaponic irrigation?: A comparative analysis. PLoS ONE 17(8): e0269401. https://doi.org/10.1371/journal.pone.0269401

Qian, Q., Yu, K., Yadav, P. K., Dhal, S., Kalafatis, S., Thomasson, J. A., & Hardin IV, R. G. (2022, June). “Cotton crop disease detection on remotely collected aerial images with deep learning.” In Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping VII (Vol. 12114, pp. 23-31). SPIE.

Dhal, S. B., Bagavathiannan, M., Braga-Neto, U., & Kalafatis, S. (2022). Nutrient optimization for plant growth in Aquaponic irrigation using machine learning for small training datasets. Artificial Intelligence in Agriculture.

Dhal, S. B., Jungbluth, K., Lin, R., Sabahi, S. P., Bagavathiannan, M., Braga-Neto, U., & Kalafatis, S. (2022). A machine-learning-based IoT system for optimizing nutrient supply in commercial aquaponic operations. Sensors, 22(9), 3510.

 

Pages

  • Biography
  • Group Publications
  • News
  • Photo Gallery
  • Prof. Kalafatis’ Research group
  • Senior Capstone Design Program (ECEN 403/404)

© 2016–2025 Performance Computing, XR and Robotics (PXaR) Log in

Texas A&M Engineering Experiment Station Logo
  • College of Engineering
  • Facebook
  • Twitter
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment